Benchmark Functions for CEC’2013 Special Session and Competition on Niching Methods for Multimodal Function Optimization

نویسندگان

  • Xiaodong Li
  • Andries Engelbrecht
  • Michael G. Epitropakis
چکیده

Population-based meta-heuristic algorithms such as Evolutionary Algorithms (EAs) in their original forms are usually designed for locating a single global solution. These algorithms typically converge to a single solution because of the global selection scheme used. Nevertheless, many realworld problems are “multimodal” by nature, i.e., multiple satisfactory solutions exist. It may be desirable to locate many such satisfactory solutions so that a decision maker can choose one that is most proper in his/her problem domain. Numerous techniques have been developed in the past for locating multiple optima (global or local). These techniques are commonly referred to as “niching” methods. A niching method can be incorporated into a standard EA to promote and maintain formation of multiple stable subpopulations within a single population, with an aim to locate multiple globally optimal or suboptimal solutions. Many niching methods have been developed in the past, including crowding [1], fitness sharing [2], deterministic crowding [3], derating [4], restricted tournament selection [5], parallelization [6], stretching and deflation [7], clustering [8], clearing [9], and speciation [10], etc. Although these niching methods have been around for many years, further advances in this area have been hindered by several obstacles: most studies focus on low dimensional multimodal problems (2 or 3 dimensions), therefore it is difficult to assess these methods’ scalability to both high modality and dimensionality; some niching methods introduces new parameters which are difficult to set, making these methods difficult to use; different benchmark test functions or different variants of the same functions are used, hence comparing the performance of different niching methods is difficult. We believe it is now time to adopt a unifying framework for evaluating niching methods, so that further advances in this area can be made with ease. In this technical report, we put together 20 benchmark test functions (including several identical functions with different dimension sizes), with different characteristics, for evaluating niching algorithms. The first 10 benchmark functions are simple, well known and

منابع مشابه

Region-based memetic algorithm with archive for multimodal optimisation

In this paper we propose a specially designed memetic algorithm for multimodal optimisation problems. The proposal uses a niching strategy, called region-based niching strategy, that divides the search space in predefined and indexable hypercubes with decreasing size, called regions. This niching technique allows our proposal to keep high diversity in the population, and to keep the most promis...

متن کامل

Fuzzy particle swarm optimization with nearest-better neighborhood for multimodal optimization

In the last decades, many efforts have been made to solve multimodal optimization problems using Particle Swarm Optimization (PSO). To produce good results, these PSO algorithms need to specify some niching parameters to define the local neighborhood. In this paper, our motivation is to propose the novel neighborhood structures that remove undesirable niching parameters without sacrificing perf...

متن کامل

A Self-configuring Multi-strategy Multimodal Genetic Algorithm

In recent years many efficient nature-inspired techniques (based on evolutionary strategies, particle swarm optimization, differential evolution and others) have been proposed for real-valued multimodal optimization (MMO) problems. Unfortunately, there is a lack of efficient approaches for problems with binary representation. Existing techniques are usually based on general ideas of niching. Mo...

متن کامل

Ranking Results of CEC’13 Special Session & Competition on Real-Parameter Single Objective Optimization

1 Ranking procedure The algorithms presented during the CEC'2013 Special Session & Competition on Real-Parameter Single Objective Optimization were ranked using the procedure described below. The mean ranking values for all algorithms on all problems (28) and dimensions (10D, 30-D, 50-D) are presented in the following figures and tables. 1. For N algorithms (here, N = 21 or = 3 or = 2) the resu...

متن کامل

A Cumulative Multi-Niching Genetic Algorithm for Multimodal Function Optimization

This paper presents a cumulative multi-niching genetic algorithm (CMN GA), designed to expedite optimization problems that have computationally-expensive multimodal objective functions. By never discarding individuals from the population, the CMN GA makes use of the information from every objective function evaluation as it explores the design space. A fitness-related population density control...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013